close

此篇記錄如何開啟一個新Visual Studio專案,並且將Caffe以函式庫的方式新增加入至新專案,如此一來,即可使用Caffe訓練完後之模型以及Caffe中的辨識程式來進行應用,此範例是將訓練好之人臉辨識模型以及Caffe辨識函式於新專案實現,以下有詳細的步驟說明。


開啟新的Visual Studio專案並加入Caffe函式庫。

(此處使用Visual Studio 2015為例)

開啟新專案 ->  Visual C++  -> Win32主控台應用程式,並點選確定。

點選下一步。

如下圖,選擇空專案,並按完成。

成功開啟專案後,點選專案右鍵 -> 加入 -> 新增項目即可得到下圖,並加入一個.cpp檔。

Caffe函式庫加入新專案,點選專案右鍵 -> 屬性

(記得組態要選擇Debug、平台選擇x64,如下圖上方)

設定C/C++ -> 一般 -> 其他Include目錄。

依照下圖位置進行include

(需視CaffeCUDAlibraries_v140_x64_py35_1.1.0進行調整)

C:\project\caffe\scripts\build\include

C:\project\caffe\scripts\build

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\include\boost-1_61

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\include

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\include

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\include\opencv

C:\project\caffe\include

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\Include

選擇前置處理器,並加入下列指令。

WIN32

_WINDOWS

CAFFE_VERSION=1.0.0

BOOST_ALL_NO_LIB

USE_LMDB

USE_LEVELDB

USE_CUDNN

USE_OPENCV

CMAKE_WINDOWS_BUILD

GLOG_NO_ABBREVIATED_SEVERITIES

GOOGLE_GLOG_DLL_DECL=__declspec(dllimport)

GOOGLE_GLOG_DLL_DECL_FOR_UNITTESTS=__declspec(dllimport)

H5_BUILT_AS_DYNAMIC_LIB=1

CMAKE_INTDIR="Debug"

選擇連結器 -> 輸入,並加入以下指令(紅色部分前面需依照路徑修改)。

kernel32.lib

user32.lib

gdi32.lib

winspool.lib

shell32.lib

ole32.lib

oleaut32.lib

uuid.lib

comdlg32.lib

advapi32.lib

C:\project\caffe\scripts\build\lib\\Debug\caffe-d.lib

C:\project\caffe\scripts\build\lib\\Debug\caffeproto-d.lib

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\lib\boost_system-vc140-mt-gd-1_61.lib

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\lib\boost_thread-vc140-mt-gd-1_61.lib

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\lib\boost_filesystem-vc140-mt-gd-1_61.lib

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\lib\boost_chrono-vc140-mt-gd-1_61.lib

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\lib\boost_date_time-vc140-mt-gd-1_61.lib

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\lib\boost_atomic-vc140-mt-gd-1_61.lib

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\lib\glogd.lib

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\lib\gflagsd.lib

shlwapi.lib

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\lib\libprotobufd.lib

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\lib\caffehdf5_hl_D.lib

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\lib\caffehdf5_D.lib

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\lib\caffezlibd.lib

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\lib\lmdbd.lib

ntdll.lib

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\lib\leveldbd.lib

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\lib\snappy_staticd.lib

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\lib\caffezlibd.lib

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64\cudart.lib

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64\curand.lib

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64\cublas.lib

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64\cublas_device.lib

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64\cudnn.lib

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\x64\vc14\lib\opencv_highgui310d.lib

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\x64\vc14\lib\opencv_videoio310d.lib

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\x64\vc14\lib\opencv_imgcodecs310d.lib

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\x64\vc14\lib\opencv_imgproc310d.lib

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\x64\vc14\lib\opencv_core310d.lib

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\lib\libopenblas.dll.a

C:\Users\user\Anaconda3\libs\python35.lib

C:\Users\user\.caffe\dependencies\libraries_v140_x64_py35_1.1.0\libraries\lib\boost_python-vc140-mt-gd-1_61.lib

選擇連結器 -> 進階 -> 匯入程式庫,並輸入以下指令

(需依照路徑修改)

C:/project/caffe/scripts/build/lib/Debug/classification-d.lib

Caffecpp_classification 下的dll檔複製(依造檔案路徑進行複製)

C:\project\caffe\scripts\build\examples\cpp_classification\Debug

並貼至新改專案中x64/Debug中。

最後將Caffe專案中之classification.cpp程式碼複製至新開專案的.cpp,執行後即可得到下圖之結果,也成功將Caffe函式庫include至新專案。

(上面要選擇Debug以及x64)


classification.cpp

(紅色部分更改為自己路徑)

#include <caffe/caffe.hpp>
#ifdef USE_OPENCV
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#endif  // USE_OPENCV
#include <algorithm>
#include <iosfwd>
#include <memory>
#include <string>
#include <utility>
#include <vector>

#ifdef USE_OPENCV
using namespace caffe;  // NOLINT(build/namespaces)
using std::string;

/* Pair (label, confidence) representing a prediction. */
typedef std::pair<string, float> Prediction;

class Classifier {
public:
    Classifier(const string& model_file,
        const string& trained_file,
        const string& mean_file,
        const string& label_file);

    std::vector<Prediction> Classify(const cv::Mat& img, int N = 5);

private:
    void SetMean(const string& mean_file);

    std::vector<float> Predict(const cv::Mat& img);

    void WrapInputLayer(std::vector<cv::Mat>* input_channels);

    void Preprocess(const cv::Mat& img,
        std::vector<cv::Mat>* input_channels);

private:
    shared_ptr<Net<float> > net_;
    cv::Size input_geometry_;
    int num_channels_;
    cv::Mat mean_;
    std::vector<string> labels_;
};

Classifier::Classifier(const string& model_file,
    const string& trained_file,
    const string& mean_file,
    const string& label_file) {
#ifdef CPU_ONLY
    Caffe::set_mode(Caffe::CPU);
#else
    Caffe::set_mode(Caffe::GPU);
#endif

    /* Load the network. */
    net_.reset(new Net<float>(model_file, TEST));
    net_->CopyTrainedLayersFrom(trained_file);

    CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
    CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";

    Blob<float>* input_layer = net_->input_blobs()[0];
    num_channels_ = input_layer->channels();
    CHECK(num_channels_ == 3 || num_channels_ == 1)
        << "Input layer should have 1 or 3 channels.";
    input_geometry_ = cv::Size(input_layer->width(), input_layer->height());

    /* Load the binaryproto mean file. */
    SetMean(mean_file);

    /* Load labels. */
    std::ifstream labels(label_file.c_str());
    CHECK(labels) << "Unable to open labels file " << label_file;
    string line;
    while (std::getline(labels, line))
        labels_.push_back(string(line));

    Blob<float>* output_layer = net_->output_blobs()[0];
    CHECK_EQ(labels_.size(), output_layer->channels())
        << "Number of labels is different from the output layer dimension.";
}

static bool PairCompare(const std::pair<float, int>& lhs,
    const std::pair<float, int>& rhs) {
    return lhs.first > rhs.first;
}

/* Return the indices of the top N values of vector v. */
static std::vector<int> Argmax(const std::vector<float>& v, int N) {
    std::vector<std::pair<float, int> > pairs;
    for (size_t i = 0; i < v.size(); ++i)
        pairs.push_back(std::make_pair(v[i], static_cast<int>(i)));
    std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);

    std::vector<int> result;
    for (int i = 0; i < N; ++i)
        result.push_back(pairs[i].second);
    return result;
}

/* Return the top N predictions. */
std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) {
    std::vector<float> output = Predict(img);

    N = std::min<int>(labels_.size(), N);
    std::vector<int> maxN = Argmax(output, N);
    std::vector<Prediction> predictions;
    for (int i = 0; i < N; ++i) {
        int idx = maxN[i];
        predictions.push_back(std::make_pair(labels_[idx], output[idx]));
    }

    return predictions;
}

/* Load the mean file in binaryproto format. */
void Classifier::SetMean(const string& mean_file) {
    BlobProto blob_proto;
    ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);

    /* Convert from BlobProto to Blob<float> */
    Blob<float> mean_blob;
    mean_blob.FromProto(blob_proto);
    CHECK_EQ(mean_blob.channels(), num_channels_)
        << "Number of channels of mean file doesn't match input layer.";

    /* The format of the mean file is planar 32-bit float BGR or grayscale. */
    std::vector<cv::Mat> channels;
    float* data = mean_blob.mutable_cpu_data();
    for (int i = 0; i < num_channels_; ++i) {
        /* Extract an individual channel. */
        cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
        channels.push_back(channel);
        data += mean_blob.height() * mean_blob.width();
    }

    /* Merge the separate channels into a single image. */
    cv::Mat mean;
    cv::merge(channels, mean);

    /* Compute the global mean pixel value and create a mean image
    * filled with this value. */
    cv::Scalar channel_mean = cv::mean(mean);
    mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
}

std::vector<float> Classifier::Predict(const cv::Mat& img) {
    Blob<float>* input_layer = net_->input_blobs()[0];
    input_layer->Reshape(1, num_channels_,
        input_geometry_.height, input_geometry_.width);
    /* Forward dimension change to all layers. */
    net_->Reshape();

    std::vector<cv::Mat> input_channels;
    WrapInputLayer(&input_channels);

    Preprocess(img, &input_channels);

    net_->Forward();

    /* Copy the output layer to a std::vector */
    Blob<float>* output_layer = net_->output_blobs()[0];
    const float* begin = output_layer->cpu_data();
    const float* end = begin + output_layer->channels();
    return std::vector<float>(begin, end);
}

/* Wrap the input layer of the network in separate cv::Mat objects
* (one per channel). This way we save one memcpy operation and we
* don't need to rely on cudaMemcpy2D. The last preprocessing
* operation will write the separate channels directly to the input
* layer. */
void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
    Blob<float>* input_layer = net_->input_blobs()[0];

    int width = input_layer->width();
    int height = input_layer->height();
    float* input_data = input_layer->mutable_cpu_data();
    for (int i = 0; i < input_layer->channels(); ++i) {
        cv::Mat channel(height, width, CV_32FC1, input_data);
        input_channels->push_back(channel);
        input_data += width * height;
    }
}

void Classifier::Preprocess(const cv::Mat& img,
    std::vector<cv::Mat>* input_channels) {
    /* Convert the input image to the input image format of the network. */
    cv::Mat sample;
    if (img.channels() == 3 && num_channels_ == 1)
        cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
    else if (img.channels() == 4 && num_channels_ == 1)
        cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
    else if (img.channels() == 4 && num_channels_ == 3)
        cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
    else if (img.channels() == 1 && num_channels_ == 3)
        cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
    else
        sample = img;

    cv::Mat sample_resized;
    if (sample.size() != input_geometry_)
        cv::resize(sample, sample_resized, input_geometry_);
    else
        sample_resized = sample;

    cv::Mat sample_float;
    if (num_channels_ == 3)
        sample_resized.convertTo(sample_float, CV_32FC3);
    else
        sample_resized.convertTo(sample_float, CV_32FC1);

    cv::Mat sample_normalized;
    cv::subtract(sample_float, mean_, sample_normalized);

    /* This operation will write the separate BGR planes directly to the
    * input layer of the network because it is wrapped by the cv::Mat
    * objects in input_channels. */
    cv::split(sample_normalized, *input_channels);

    CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
        == net_->input_blobs()[0]->cpu_data())
        << "Input channels are not wrapping the input layer of the network.";
}

int main() {

    string model_file = "C:/project/caffe/data/facial_expression_train_RAF-3/lenet_deploy.prototxt";
     string trained_file = "C:/project/caffe/data/facial_expression_train_RAF-3/
snapshot_lenet/_iter_10000.caffemodel";
    string mean_file = "C:/project/caffe/data/facial_expression_train_RAF-3/mean.binaryproto";
    string label_file = "C:/project/caffe/data/facial_expression_train_RAF-3/synset_words.txt";
    string file = "C:/project/caffe/data/facial_expression_train_RAF-3/aligned/test_0234_aligned.jpg";

    Classifier classifier(model_file, trained_file, mean_file, label_file); //loading training model

    std::cout << "---------- Prediction for "
        << file << " ----------" << std::endl;

    cv::Mat img = cv::imread(file, -1);
    CHECK(!img.empty()) << "Unable to decode image " << file;
    std::vector<Prediction> predictions = classifier.Classify(img);

    /* Print the top N predictions. */
    for (size_t i = 0; i < predictions.size(); ++i) {
        Prediction p = predictions[i];
        std::cout << std::fixed << std::setprecision(4) << p.second << " - \""
            << p.first << "\"" << std::endl;
    }

    imshow("Display window", img);
    cvWaitKey(0);

}
#else
int main(int argc, char** argv) {
    LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV.";
}
#endif  // USE_OPENCV

#如有問題歡迎留言討論

arrow
arrow

    水面上的小草 發表在 痞客邦 留言(0) 人氣()