當多人使用同一台伺服器進行開發時,若有人正在使用TensorFlow進行GPU運算且沒有加入以下指令時,會把GPU的內存直接暫滿,導致其他人無法使用,此處紀錄如何限制使用量以及如何查詢使用狀況。
一、在Python或Jupyter上限制TensorFlow使用GPU暫存數量:
1.使用自訂數量的暫存大小:
cfg = tf.ConfigProto() cfg.gpu_options.per_process_gpu_memory_fraction = 0.5 # 使用50%的GPU暫存 session = tf.Session(config=cfg )
2.使用預設最小的暫存大小:
cfg = tf.ConfigProto() cfg.gpu_options.allow_growth = True session = tf.Session(config=cfg )
二、在Python中指定GPU編號使用:
import os os.environ["CUDA_VISIBLE_DEVICES"] = "1" #指定使用編號1的GPU,預設是0
三、查看GPU記憶體以及使用率:
nvidia-smi
輸入後即可看到下圖,包含裝置名稱、記憶體使用狀況以及GPU運算使用率等資訊。
四、實際操作範例
此處使用Mnist手寫辨識進行測試驗證
session = tf.Session(config=cfg)可以替換成with tf.Session(config = cfg) as sess:直接使用
(注意程式中4、5、6、7、61行)
from __future__ import print_function import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import os os.environ["CUDA_VISIBLE_DEVICES"] = "1" cfg = tf.ConfigProto() cfg.gpu_options.per_process_gpu_memory_fraction = 0.1 # 使用50%的GPU暫存 # number 1 to 10 data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) def compute_accuracy(v_xs, v_ys): global prediction y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1}) correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1}) return result def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, W): # stride [1, x_movement, y_movement, 1] # Must have strides[0] = strides[3] = 1 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): # stride [1, x_movement, y_movement, 1] return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME') # define placeholder for inputs to network xs = tf.placeholder(tf.float32, [None, 784])/255. # 28x28 ys = tf.placeholder(tf.float32, [None, 10]) keep_prob = tf.placeholder(tf.float32) x_image = tf.reshape(xs, [-1, 28, 28, 1]) # print(x_image.shape) # [n_samples, 28,28,1] ## conv1 layer ## W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32 b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 28x28x32 h_pool1 = max_pool_2x2(h_conv1) # output size 14x14x32 ## conv2 layer ## W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64 b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 14x14x64 h_pool2 = max_pool_2x2(h_conv2) # output size 7x7x64 ## fc1 layer ## W_fc1 = weight_variable([7*7*64, 1024]) b_fc1 = bias_variable([1024]) # [n_samples, 7, 7, 64] ->> [n_samples, 7*7*64] h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) ## fc2 layer ## W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) # the error between prediction and real data cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), reduction_indices=[1])) # loss train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) with tf.Session(config = cfg) as sess: # important step # tf.initialize_all_variables() no long valid from # 2017-03-02 if using tensorflow >= 0.12 if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1: init = tf.initialize_all_variables() else: init = tf.global_variables_initializer() sess.run(init) for i in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5}) if i % 50 == 0: print(compute_accuracy( mnist.test.images[:1000], mnist.test.labels[:1000]))
還沒Run上面程式碼時GPU暫存的使用狀況:
指定使用第1顆,並且使用10%的暫存(該GPU大小為32508M,實際使用會較設定值大,因此為4052M)
(該程式的PID為22892)
指定使用第1顆,且使用最小暫存(大小為2850M)
(該程式的PID為23351)
文章標籤
全站熱搜
留言列表